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Abstract
Purpose – In many real-life situations ranging from financial to volcanic data, growth is described either by
a power law –which is linear in log-log scale or by a quadratic dependence in the log-log scale. The purpose of
this paper is to explain this empirical fact.
Design/methodology/approach – The authors use natural scale invariance requirements.
Findings – In this paper, the authors used natural scale invariance requirement to explain the ubiquity of
quadratic log-log dependencies. The authors also explain what to do if quadratic log-log models turn out to be
insufficiently accurate. In this case, scale-invariance requirements lead to dependencies which in the log-log
scale take cubic, 4th order, etc. form.
Originality/value – To the best of authors’ knowledge, this is the first theoretical explanation of the
empirical quadratic log-log dependence.
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1. Formulation of the problem
Predictions: a typical situation. One of the main objective of science and engineering is to
predict the future state of the world – i.e. the future values of the quantities that describe this
state – and to come up with measures that lead to the most favorable future state. For
example, we want to predict tomorrow’s weather – and if it will be catastrophic in a given
area, we need to plan corresponding closings and, if needed, evacuations. We want to predict
next year’s gross domestic product (GDP) – and if the current trends predict a crisis, we
want to come up with measures that would prevent this crisis – or at least decrease its
severity.
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In some situations, we can predict the future values of some quantities with high
accuracy. For example, we can predict solar eclipses centuries ahead.

However, such situations are rare. In most real-life situations, we cannot make exact
predictions: e.g. when we predict the weather, there are many factors that affect tomorrow’s
weather, and that we, at present, do not know. In such situations, we can predict, at best, the
probabilities of future values of the corresponding quantity. These probabilities can be
described, e.g. by the probability density function (pdf) r (x). Such situations are typical in
economics and finance; they are also typical in geosciences – e.g. in predicting volcanic
activity, they are typical in many other application areas.

Stationary vs non-stationary situations. In some cases – e.g. in celestial mechanics or, for
a reasonably short period, in weather prediction – the corresponding probabilities remain
the same day after day and year after year. So, the probability density function r t(x) remains
the same for all moments of time t: r t(x) = r (x).

However, in many other cases, the situation changes with time: on average, the values x
grow with time. This happens with economic characteristics such as GDP or stock prices;
this happens with volcanic activity when the volcano becomes more and more active. In
many such cases, the shape of the probability distribution remains the same, but the scale
changes. In other words, at each moment of time t, the distribution of x is similar to the
initial (t = 1) distribution of the quantity x

C tð Þ for some increasing function C(t), i.e. r t(x)

should be proportional to r 1
x

C tð Þ
� �

. The coefficient of proportionality can be easily found

from the condition that the overall probability should be equal to 1, i.e. that
ð
r t xð Þ dx ¼ 1.

Thus, we get:

r t xð Þ ¼ 1
C tð Þ � r

x
C tð Þ

� �
: (1)

How C(t) depends on time: empirical fact. In many practical situations, the growth C(t) is
described by the power law:

C tð Þ ¼ A � tb; (2)

for some constants A and b. If we take the logarithm of both sides of this formula, we can
conclude that in the log-log scale, the power law becomes a linear dependence:

ln C tð Þð Þ ¼ b � ln tð Þ þ ln Að Þ: (3)

In other cases, we have a more complex dependence:

C tð Þ ¼ A � tb tð Þ (4)

where:

b tð Þ ¼ b0 þ b1 � ln tð Þ: (5)

In this case, in log-log-scale, we have:

ln C tð Þð Þ ¼ b tð Þ � ln tð Þ þ ln Að Þ ¼ b0 � ln tð Þ þ b1 � ln tð Þð Þ2 þ ln Að Þ: (6)
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In other words, we have a quadratic log-log dependence, of which the linear log-log
dependence (3) is a particular case corresponding to b1 = 0.

Such dependencies are really ubiquitous: e.g. an empirical analysis provided in Mariani
et al. (2020) has shown that many real-life dependencies, ranging from economic to volcanic
data, follow these formulas. This naturally leads to the following questions:

Natural questions:

Q1. How can we explain the ubiquity of the dependence (4)–(5)?

Q2. When the match with this formula is not perfect, what more accurate formula
should we try?

In this paper, we provide answers to both questions.

2. Analysis of the problem: why power law?
Why power law. In many cases, the dependence of C(t) on t is described by the power law. So,
before we analyze the more general question of why the general dependence (4)–(5) is
ubiquitous, let us analyze why power law is frequently observed.

Scale invariance: idea.We are interested in learning how the growth function C(t) depends on
time t. In our analysis, we use numerical values of C(t) and numerical values of time t. Numerical
values of time depend on the measuring unit: we get different values if we use years, quarters,
months, days, etc. If we replace the original unit with the one that is l times smaller, then all
numerical values of time t are replaced with new values l · t. For example, if we replace years
withmonths, then in the new units, the period of twoyears becomes 12 * 2= 24months.

In many cases, we do not have a preferred unit for measuring time. In such situations, it
is reasonable to require that the dependence between C and t remains the same if we change
the unit for measuring time. This requirement is known as scale invariance.

The requirement of scale invariance is typical in physics: e.g. the formula d = v · t
describing the relation between distance d, velocity v and time t remains true, no matter
what units we select for measuring time, e.g. hours or seconds.

Of course, we cannot simply assume that the value C(t) remains the same: the growth in
two years is clearly different from the growth in two months. This can be easily explained
on the example of the above physics formula: if we change the unit for time, then, for the
formula to remain valid, we need to also appropriately change the units for other quantities:
e.g. replace the velocity unit from km/hour to km/sec. In our cases, this means that if we
change a unit for time, then the formula C=C(t) should remain valid if we also appropriately
change the unit for C, into a new unit which is m times smaller, for some m depending on l.

In other words, if we have:

C ¼ C tð Þ; (7)

then, for every l , we should also have:

C0 ¼ C t0ð Þ; (8)

where:

C0 ¼ m lð Þ � C and t0 ¼ l � t: (9)
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Scale invariance explains power law. Substituting expression (9) for C0 and t0 into
equation (8), we conclude that m (l ) · C =C(l · t). Substituting equation (7) for C into this
formula, we conclude that:

C l � tð Þ ¼ m lð Þ � C tð Þ: (10)

In real life, the dependencies are usually continuous, and for continuous functions, it is
known that all solutions of the functional equation (10) have the form C(t) = A·tb; (Aczél and
Dhombres, 2008).

Thus, we indeed have a natural explanation for the power law.

3. How to explain quadratic log-log dependence
Main idea. As we have mentioned earlier, the main reason why the real-life processes are
probabilistic is that the actual value x(t) depends also on some characteristics that we do not
know. In particular, this means that the value C(t) also depends on such characteristics
y1,. . .,yn: C=C(t,y1,. . .,yn).

Let us first consider the simplest such case; when we consider only the dependence of one
such characteristics y1, then C=C(t,y1).

Let us apply scale invariance to this situation. Now, in addition to time t, we have another
quantity y1 for which we can also select different measuring units. It is, therefore, reasonable
to require that no matter how we change both unit for t and unit for y1, we will get the same
dependence.

In precise terms, for every l > 0 and l1> 0, there exists a value m (l , l1) such that if:

C ¼ C t; y1ð Þ; (11)

then:

C0 ¼ C t0; y01
� �

; (12)

where:

t0 ¼ l � t; y01 ¼ l � y1; C0 ¼ m l ; l 1ð Þ � C: (13)

Let us analyze this situation. Substituting equation (13) into equation (12), we conclude that:

C l � t; l 1 � y1ð Þ ¼ m l ; l 1ð Þ � C: (14)

Substituting equation (11) for C into equation (14), we get:

C l � t; l 1 � y1ð Þ ¼ m l ; l 1ð Þ � C t; y1ð Þ: (15)

For each y1, by taking l 1 = 1, we conclude that:

C l � t; y1ð Þ ¼ m l ; 1ð Þ � C t; y1ð Þ: (16)

Thus, for each y1, the function Cy1 tð Þ¼def C t; y1ð Þ satisfies equation (10). Thus, based on the
result cited in the previous section, we have:
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Cy1 tð Þ ¼ C t; y1ð Þ ¼ A y1ð Þ � tb y1ð Þ; (17)

for someA and b depending on y1. In particular, in log-log scale, we get:

ln C t; y1ð Þ� � ¼ b y1ð Þ � ln tð Þ þ ln A y1ð Þ� �
: (18)

Similarly, for every t, we can take l = 1 and get:

C t;l 1 � yð Þ ¼ m 1; l 1ð Þ � C t; y1ð Þ: (19)

Thus, for each t, the function Ct y1ð Þ¼def C t; y1ð Þ satisfies equation (10). Thus, based on the
result cited in the previous section, we have:

Ct y1ð Þ ¼ C t; y1ð Þ ¼ A0 tð Þ � yb0 tð Þ1 ; (20)

for someA0 and b0 depending on t. In particular, in log-log scale, we get:

ln C t; y1ð Þ� � ¼ b0 tð Þ � ln y1ð Þ þ ln A0 tð Þð Þ: (21)

Equation (18) and (21) describe the same expression ln(C(t,y1)). By equating these
expressions for two different values t1< t2, we conclude that:

b y1ð Þ � ln t1ð Þ þ ln A y1ð Þ� � ¼ b0 t1ð Þ � ln y1ð Þ þ ln A0 t1ð Þ� �
; (22)

b y1ð Þ � ln t2ð Þ þ ln A y1ð Þ� � ¼ b0 t2ð Þ � ln y1ð Þ þ ln A0 t2ð Þ� �
: (23)

Subtracting equation (22) from equation (23), we get:

b y1ð Þ � ln t2ð Þ � ln t1ð Þð Þ ¼ b0 t2ð Þ � b0 t1ð Þ� � � ln y1ð Þ þ ln A0 t2ð Þ� �� ln A0 t1ð Þ� �
:

�
(24)

So, by dividing both sides by the difference ln(t2) – ln(t1), we get:

b y1ð Þ ¼ c1 � ln y1ð Þ þ c2; (25)

where we denoted:

c1 ¼ b0 t2ð Þ � b0 t1ð Þ
ln t2ð Þ � ln t1ð Þ and c2 ¼

ln A0 t2ð Þð Þ � ln A0 t1ð Þð Þ
ln t2ð Þ � ln t1ð Þ : (26)

Similarly, if we multiply equation (23) by ln(t1), equation (22) by ln(t2) and subtract the
results, we get:

ln A y1ð Þ� � � ln t2ð Þ � ln t1ð Þð Þ ¼ b0 t2ð Þ � ln t1ð Þ � b0 t1ð Þ � ln t2ð Þð Þ � ln y1ð Þ
þ ln A0 t2ð Þ� � � ln t1ð Þ � ln A0 t1ð Þ� � � ln t2ð Þ� �

; (27)
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Hence:

ln A y1ð Þ� � ¼ c3 � ln y1ð Þ þ c4; (28)

where we denoted:

c3 ¼ b0 t2ð Þ � ln t1ð Þ � b0 t1ð Þ � ln t2ð Þ
ln t2ð Þ � ln t1ð Þ (29a)

and:

c4 ¼ ln A0 t2ð Þð Þ � ln t1ð Þ � ln A0 t1ð Þð Þ � ln t2ð Þ
ln t2ð Þ � ln t1ð Þ : (29b)

Substituting equation (25) and (28) into equation (18), we conclude that:

ln C t; y1ð Þ� � ¼ c1 � ln y1ð Þ þ c2
� � � ln tð Þ þ c3 � ln y1ð Þ þ c4

� �
¼ c4 þ c2 � ln tð Þ þ c3 � ln y1ð Þ þ c1 � ln tð Þ � ln y1ð Þ: (30)

If we now assume that the dependence of y1 on t is also scale invariant, then the result of the
previous section shows that:

y1 ¼ A00 � tb00

for someA00 and b00, i.e. in log-log form:

ln y1ð Þ ¼ b00 � ln tð Þ þ ln A00ð Þ: (31)

Substituting equation (31) into equation (30), we get:

ln C tð Þð Þ ¼ ln C t; y1 tð Þ
� �� �

¼ C0 þ C1 � ln tð Þ þ C2 � ln tð Þð Þ2; (32)

where:

C0 ¼ c4 þ c3 � ln A00ð Þ; C1 ¼ c2 þ c3 � b00 þ c1 � ln A00ð Þ; C2 ¼ c1 � b00: (33)

Thus, we indeed explained the quadratic log-log dependence.

4.What next?
Let us use scale invariance. In general, we have a dependence:

C ¼ C t; y1; . . . ; ynð Þ; (34)

on n � 1 auxiliary quantities. In this general case, scale invariance means for every l > 0
and for all possible values l 1 > 0, . . ., l n, there exists a value m (l , l 1,. . ., l n) such that if
equation (34) is satisfied, then:

C0 ¼ C t0; y01; . . . ; y
0
n

� �
; (35)
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where:

t0 ¼ l � t; y01 ¼ l � y1; . . . ; y0n ¼ l � yn; C0 ¼ m l ; l 1; . . . ; l nð Þ � C: (36)

What we can derive from scale invariance. Similar to the previous section, we can, thus,
conclude that the expression ln(C(t,y1,. . .,yn)) is linear in ln(t), linear in ln(y1), . . ., and linear in
ln(yn). Thus, it is a multi-linear function:

ln C t; y1; . . . ; ynð Þ� � ¼ c0 þ ct � ln tð Þ þ
Xn
i¼1

ci � ln yið Þþ
Xn
i¼1

ct;i � ln tð Þ � ln yið Þ þ
X
i<j

ci;j � ln yið Þ � ln yjð Þ þ . . .þ

ct;1;...;n � ln tð Þ � ln y1ð Þ � . . . � ln ynð Þ:

(37)

If we assume that the dependence of each auxiliary quantity yi on t is also scale invariant,
then we get:

ln yið Þ ¼ b00i � ln tð Þ þ ln A00
i

� �
(38)

for some values b00i andA00
i. Substituting equation (38) into equation (37), we conclude that:

ln C tð Þð Þ ¼ C0 þ C1 � ln tð Þ þ C2 � ln tð Þð Þ2 þ . . .þ Cnþ1 � ln tð Þð Þnþ1
: (39)

Resulting recommendation. So, if quadratic log-log dependence (corresponding to n = 1) is
too inaccurate, we need to try cubic log-log dependence (corresponding to n = 2), then, if
needed, fourth-order log-log dependence corresponding to n= 3, etc.
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